打通感知与认知,明略数据还要做大数据知识工程

  • 时间:
  • 浏览:1

  (上图为明略数据创始人吴明辉)

  作为国内行业知识图谱领域的创新公司,明略数据在2018年4月进入了IDC的《中国知识图谱市场,2018》创新者研究报告,成为IDC评选出的5家中国知识图谱技术应用市场创新者。2017年8月,明略数据经过3年实践沉淀以及8年大数据技术积累,首次发布了基于知识图谱的行业人工智能大脑—明智系统1.0。

  2018年9月7日,明略数据举办了2018年度产品发布会,即“行业AI大脑明智系统2.0”,这是对1.0版本的产品技术体系全面升级。明智系统2.0在数据出理 阶段引入语音识别和机器视觉来充足感知类数据,将所有数据汇聚到“AI驱动的数据治理”平台并可通过全网络即时汇聚感知平台“明察”查询,后来再存储到混合型知识存储数据库NEST,通过知识图谱分析平台SCOPA完成向行业大脑的认知智能输出,打通感知型人工智能到认知型人工智能。

  除了持续推动产品创新外,明略数据还在不断引入顶尖人才。2018年5月,IEEE Fellow、国家“千人计划”特聘专家吴信东教授加盟明略数据,出任公司首席科学家和副总裁,2018年7月明略科学院成立。吴信东所领导的“大数据知识工程”科研也将在明略数据的投资下进一步发展,落实科技部2016年重点专项“大数据知识工程基础理论及其应用研究”的成果,这后来 极具前瞻性、指在起步阶段的“明略大智慧教育系统”。

  完正的人工智能系统

  “明智系统2.0的形象,就像大脑的形状。左边是深度学习,右边后来 知识图谱,这两边连接到一块儿,即把感知和认知联结起来,这后来 我们都我们都 新一代完正的人工智能系统。”明略数据创始人吴明辉在“行业AI大脑明智系统2.0”发布会上表示。

  今天,各行各业时会倡导使用人工智能,后来为哪几种人工智能技术在后来 行业中,还这么 得到很好的发展?吴明辉认为,其中的原因分析分析很简单,后来 后来后来 人工智能专业技术公司都只聚焦某四个 多或某几买车人工智能技术上,而这么 真正的把完正的人工智能系统组建起来,通过完正的人工智还时需力为行业提供整合服务。

  明智系统2.0嘴笨 后来 人工智能技术的整合服务,通过优选行业中业已心智心智性成熟是什么是什么图片 图片 图片 的句子的句子是什么是什么的感知技术、认知技术以及其它所有组件,链接到一块儿后的成果。本次为了增强感知数据,明略数据推出了语音识别数据出理 模块,专门用于感知音频数据;与战略协作伙伴“千视通”战略协作的机器视觉数据出理 模块,专门用于感知视频数据。而“AI驱动的数据治理”平台则包括后来的CONA形状化数据通用治理模块以及本次新增加的Raptor非形状化文本治理模块,加进去去进去新推出的HARTS多元数据深度挖掘计算模块。

  感知计算本质上是为认知计算提供数据基础。“AI驱动的数据治理”平台,完成了各类形状化数据、非形状化数据、图像、文本等多维数据的出理 过程,出理 的结果后来 “符号”。本次2018明略数据的年度产品发布会主题为“符号的力量”,即强调“符号”是连接感知计算与认知计算的纽带。“符号”源自人工智能三大流派中经典的“符号主义”流派,其核心是用基于数理逻辑的数理符号来表达和模拟人类的智能。

  简单的理解,后来 当用户问询“明察”系统时,同类“他是谁”,这么 “AI驱动的数据治理”系统就还时需把“他是谁”这人 疑问“翻译”成跟身份形状相关的ID,哪几种ID包括手机号、身份证号、护照号等,哪几种信息后来在后台通过符号化出理 形成了数据形状,通过索引就能马上搜索出结果,这后来 CONA和Raptor的功能;更进一步,还还时需在搜索出的结果之间建立关联关系,这后来 HARTS的功能。

  这么 ,明智系统2.0“左脑”的感知次要整体输出的结果后来 符号化的知识和情报;知识和情报输送到明智系统2.0“右脑”后,经过蜂巢NEST混合型知识存储数据库中后来存储的公安大脑、金融大脑、工业安全大脑和数字城市大脑等行业知识图谱的出理 ,再结合SCOPA知识图谱分析平台,形成综合情报研判结果,最终输出“认知”,即可用于行动的洞察。

  吴明辉介绍说,明智系统2.0后来在后来 客户处得到了应用,同类明略数据与某公安省厅战略协作,把感知系统和认知系统打通,出理 全数据类型的情报研判工作。“真的就像福尔摩斯一样,还时需用非常简单的线索把完正信息关联出来。”

  挑战大数据知识工程

  

  (上图为明略数据首席科学家吴信东教授)

  明智系统2.0嘴笨 是明略数据公司中长期战略的结束英文,未来明略数据愿意真正做到的后来 大数据知识工程的落地。

  哪几种是大数据知识工程?这是从大数据到大知识再到工程化输出可行动的洞察的过程和结果。2016年,科技部启动了云计算与大数据重点专项工程,其中“大数据知识工程基础理论及其应用研究”专项项目的研究内容包括:针对大数据异构、自治、复杂化、演化的网络环境,研究多源、动态、异质碎片化知识/知识簇的表示模型与在线挖掘土最好的办法,揭示碎片化知识的旧时光形状和演化机理;研究碎片化知识间语义关联与涌现形状,探寻其动态挖掘与拓扑融合机理;设计多粒度情景感知与知识寻径模型,研究交互式个性化服务的知识适配机理。

  吴信东后来 大数据知识工程领域的世界级专家。2016年,吴信东牵头,联合国内15家单位承接了科技部“大数据知识工程基础理论及其应用研究”专项。吴信东是该项目的首席科学家,15家单位包括合肥工业大学、中科院与系统科学研究院,西安交通大学、中国科技大学、华东师范大学,还有百度和杭州的丁香园等。

  大数据知识工程(BigKE: Knowledge Engineering with Big Data)实际上是从国内兴起、引领大数据分析走向大知识研究和应用的四个 多国际前沿研究方向。2014年1月,吴信东教授等提出了大数据在异构、自治、复杂化、演化环境下的HACE定理,大数据知识工程主要指针对用户产生的海量、低质量、无序的碎片化知识的新型知识服务系统,该系统具有知识库的自完备和增殖能力,出理 疑问土最好的办法是根据与用户的交互进行针灸学会习。

  简单的理解,大数据知识工程后来 如何把海量的由用户买车人产生的碎片化数据,基于时间和空间的属性,形成碎片化知识,再把碎片化知识连接起来用于整体系统的辅助决策,这后来 “大智慧教育”。 大数据知识工程主要出理 了传统知识工程中的“知识获取”和“知识再工程”四个 多瓶颈疑问,后来传统知识工程是由专家产生知识,后来知识再工程也比较困难。

  此外,在边缘计算兴起的前提下,后来 物联网传感器和移动设备产生的碎片化大数据,其价值时会转瞬即逝,时需要马上转化为可行动的洞察。而可行动的洞察后来 再是辅助单点、单线、单人或单机的决策,后来 要实时把碎片化的可行动洞察完正都综合起来,用于辅助整体的决策。

  吴信东以四个 多餐厅系统为例。在四个 多餐厅的完正环境中,涉及餐厅的设备、厨师、厨房装修、服务员、顾客等多买车人与物实体。作为整个餐厅的智能决策系统,首很难通过视频、图像、音频等土最好的办法感知到整个餐厅的动态运营情形,假设有十位顾客排队等待歌曲就餐,而有十位服务员轮流照看餐桌的情形,后台有十位厨师不停的接单学做菜,这么 餐厅智能决策系统就要综合餐桌的翻台情形、排队顾客的情绪、厨房装修的生产能力、服务员的繁忙程度等情报,这么 快为各种人员提供可行动的建议。比如通知前台尽快给排队顾客送上小食以免顾客因不耐烦而抛妻弃子,一块儿通知服务员尽快给某桌要抛妻弃子的顾客送上优惠券并通知前台,时需一块儿告诉后厨加速学做菜后来门口聚集了更多的顾客等等。在这人 过程中,会使用到餐饮行业知识、企业商业管理知识、门店运营知识、服务员买车人智慧教育等多个知识系统和知识图谱的融合与联动。

  原本四个 多针对餐厅环境的智能决策系统,还时需提炼出动态的知识,同类根据服务员数量、排队顾客数量、正在线程池池中的餐桌情形评估等综合计算出当前的翻台时间应该为400秒-40秒钟,一旦服务员的行动时间多于这人 计算值,后来 明餐厅的实时运营情形突然总出 了疑问,而智能决策系统也还时需实时提供建议,对哪几种环节进行哪几种样的量化的修正,以把400秒缩短到15秒甚至更少的时间。

  吴信东表示,原本还时需在具体场景中落地的大数据知识工程系统,还指在早期的起步阶段。也正是后来同样的理念和梦想,让吴信东与明略数据走到了一块儿,也吸引了来自中国科学院、中国工程院、澳大利亚科学院等机构的十余名Fellows加入明略科学院成为首批院士,还有400余位来自清华、北大等国内外著名学校的博士硕士加入成为明略科学院骨干。

  随着明智系统2.0的推出,以明略数据为代表的创业公司正在把大数据、人工智能、知识图谱等技术与行业应用更加深入的结体起来。而引入吴信东和大数据知识工程,说明具有实力的中国人工智能创业公司正在投资国际前沿科研方向,为中国的人工智能弯道超车,迈出扎实的一步。